

Speech-to-Speech Translation

Dr. Yuqing Gao Research Staff Member & Manager Speech Recognition, Understanding and Translation

IBM T. J. Watson Research Center

An Overview of IBM Research

The Sun Never Sets at IBM Research

Established: 1986 Employees: 500

Established: 1961 Employees: 1750

Established: 1955 Employees: 300

Established: 1995 Employees: 90

Established: 1995 Employees: 40

Established: 1972 Employees: 500

Established: 1998 Employees: 60

Established: 1982 Employees: 200

Human Language Technologies: voice enabled mobile transaction and interaction services in a global community

- Automatic Speech Recognition
 - Telephony Speech Recognition: Conversational Transactions
 - Embedded Speech Recognition: Pervasive Computing handheld & mobile devices
 - Superhuman Speech Recognition: Large Vocabulary
 - Audio-Visual Speech Recognition: Noise Robust
- Natural Language Understanding & Free Form Dialog
 - Conversational Interaction
- Expressive Text-To-Speech: Human-Sounding TTS
- Conversational Biometrics
 - Security: Voice Identification and Verification Agent
- Speech-to-Speech translation
 - Multilingual conversations, transactions, information access

- S Automatic Speech Recognition
 - Telephony Speech Recognition: Conversational Transactions
 - Embedded Speech Recognition:
 Pervasive Computing: handheld & mobile devices
 - Superhuman Speech Recognition
 - Transparent to user, no feedback, across channel, domain & environment
 - Audio-Visual Speech Recognition: Noise Robust
- Natural Language Understanding & Free Form Dialog
- S Expressive Text-To-Speech
- S Conversational Biometrics
 - Security: Voice Identification and Verification Agent
- Speech-to-Speech translation
 - Multilingual conversations, transactions, information access

Word Error Rate

- S Automatic Speech Recognition
 - Telephony Speech Recognition: Conversational Transactions
 - Embedded Speech Recognition:
 Pervasive Computing: handheld & mobile devices
 - Superhuman Speech Recognition
 - Audio-Visual Speech Recognition:
 Noise Robust
- S Natural Language Understanding & Free Form Dialog
 - Conversational interaction
- S Expressive Text-To-Speech
 - Human sounding TTS
- S Conversational Biometrics
 - Security: Voice Identification and Verification Agent
- Speech-to-Speech translation
 - Multilingual conversations, transactions, information access

- S Automatic Speech Recognition
 - Telephony Speech Recognition:
 Conversational Transactions
 - Embedded Speech Recognition:
 Pervasive Computing: handheld & mobile devices
 - Superhuman Speech Recognition
 - Audio-Visual Speech Recognition:
 Noise Robust
- S Natural Language Understanding & Free Form Dialog
 - Conversational interaction
- S Expressive Text-To-Speech
 - Human sounding TTS
- S Conversational Biometrics
 - Security: Voice Identification and Verification Agent
- Speech-to-Speech translation
 - Multilingual conversations, transactions, information access

- S Automatic Speech Recognition
 - Telephony Speech Recognition: Conversational Transactions
 - Embedded Speech Recognition:
 Pervasive Computing: handheld & mobile devices
 - Superhuman Speech Recognition
 - Audio-Visual Speech Recognition:
 Noise Robust
- Natural Language Understanding & Free Form Dialog
 - Conversational interaction
- S Expressive Text-To-Speech
 - Human sounding TTS
- S Conversational Biometrics
 - Security: Voice Identification and Verification Agent
- Speech-to-Speech translation
 - Multilingual conversations, transactions, information access

Si-lingual Conversation

- S Automatic Speech Recognition
 - Telephony Speech Recognition: Conversational Transactions
 - Embedded Speech Recognition:
 Pervasive Computing: handheld & mobile devices
 - Superhuman Speech Recognition
 - Audio-Visual Speech Recognition
- Natural Language Understanding & Free Form Dialog
 - Conversational interaction
- Expressive Text-To-Speech
 - Human sounding TTS
- S Conversational Biometrics
 - Security: Voice Identification and Verification Agent
- Speech-to-Speech translation
 - Multilingual conversations, transactions, information access

Customer Problems

- S Different languages spoken by people living in different regions or even by different ethnic groups living in the same region
- S Language barriers cause...
 - S Business losses for companies & inconvenience for international business or tourism travelers
 - S Difficulties for travelers include transportation, accommodation, shopping, banking, etc.
 - S Need for clear communication in international corporate meetings and conference calls
 - S Requirement for Call Center human & machine-based self-services for multilingual speakers & travelers
 - S Life threatening issues for individuals or large groups of people
 - S Humanitarian personnel providing help to people in under-developed countries or emerging crisis areas
 - S Foreign patients (travelers or immigrants) seeking emergency medical help
 - S Law enforcement and security personnel talking to foreign travelers at airports, coastal and land checkpoints for security and anti-terrorism purposes

Technical Challenges

- S Translation of speech (as opposed to written text) is greatly complicated
 - Spontaneously spoken speech often is ill-formed, includes non-grammatical disfluencies
 - Text obtained by the speech recognition decoder includes recognition errors caused by imperfect speech recognizer and background noises
- S Current ASR (speech recognition)
 - not robust to narrow bandwidth, noise, spontaneous, conversational speech
- S Current MT (machine translation): not designed to handle output of ASR system
 - Recognition errors
 - Spoken language: different from written language
 - Non-grammatical disfluencies
 - Imperfect syntax
 - Lack of formal characteristics of text: no punctuation or paragraphing
 - Translated text must be "speakable" for oral communication
 - not adequate to just translate keywords
- S ASR-MT interactions are inevitable
 - much more complex than building individual components and gluing them together
 - has to be addressed specifically

DARPA CAST (Babylon) Program

- Main goals:
 - Enhance situational awareness of warfighters in different environments by enabling them to converse in multiple languages
 - Build functional prototypes ready for limited production
- S Steps:
 - Phraselator: uni-directional, constrained to fixed phrases
 - Bi-directional, constrained
 - Bi-directional, free form
 - for force protection and medical domains
 - Participants: IBM, SRI, HRL/USC, CMU
- S IBM's role:
 - English-Mandarin
 - Produce laptop & PDA prototypes
 - Explore new approaches for S2S

DARPA Live Test – Feb 2004

- S DARPA Live Test
 - S2S system mediated bilingual conversational still spontaneous speech
 - Speakers were more cautious
 - Speakers were requested to speak one sentence at a time
 - Speakers got feedback from system, can repeat or adjust if see errors
- S IBM MASTOR system
 - ASR Performance
 - English: WER: 8.86%
 - Chinese: CER: 9.48%
 - Speech-to-Text Translation Performance
 - Accuracy: above 85% communication rate

Technical Approaches

Strategy:

- S Build upon speech and language technologies
- S Evolve from limited domains (medical assistance, tourism & phone banking) to broader domains (international meetings)
- S Focus on meaning preservation, rather than exact translation
- Measure progress in multiple fashions
 - S Explicit recognition and translation accuracy metrics
 - More importantly, success of communication of ideas, thoughts, and concepts between humans.

S Approaches

- Meaning preserving and understanding based translation
 - S Concept & emotion analysis & translation
- S Coupling ASR & NLU semantic ASR
- S Unified modeling for recognition, understanding & translation long-term

Advanced Speech-to-Speech Translation Technique

- S The speech input is decoded by a largevocabulary automatic speech recognizer (ASR) into written words.
 - The output of the speech recognizer can be analyzed to determine if the content is within the domain of interest.

- The spoken sentences are translated into the target language.
 - The sentence is parsed by a natural language understanding (NLU) engine.
 - Perform concept and word translation and perform natural language generation (NLG).

If desired, the text can then be rendered into speech using a TTS (Text-to-Speech) engine.

Concept based translation

g statistical NLU & NLG models

NLU: analysis input sentence:

NLG: generate output sentence:

Short-term & long-term challenges

- System expansion and generalization for out-of-domain words & concepts
- Noise robustness
- Translation robustness in presence of ASR errors
- Improve language & domain portability
- Regional accent recognition
- Emotional speech translation: ASR & TTS
- Augment s2s with local knowledge, information access
- Meaning representation for broad & open domains
- Unified & integrated modeling for ASR, NLU & MT

Phraselator

Bi-directional Constrained

Bi-directional Free Form

multi-domain

broad domain

open domain

Challenges for Speech Translation

Laptop & Desktop 2-way MASTOR System Interface

IBM MASTOR System Version 2.1

Click to start >>>

Handheld 2-way MASTOR System Interface

- PDA: 200MHz CPU, 64MByte memory
- Seamless switch between two directions of translations Two-way engines, shared memory English to Chinese (E->C) vs. Chinese to English (C->E)
- Menu bar control or Push to talk button to control system